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(1) State of affairs for Diff(M)

What is known about Diff(M)?

Diff(S1) ∼ Isom(S1) = O(2)

Diff(S2) ∼ O(3) [Smale 1958]

Diff(T 2) ∼
∐

GL(2,Z) T
2; components of Diff(Σg ), g > 1, are contractible.

[Eells and others, 1970s]

Diff(S3) ∼ O(4) [Hatcher 1983]

M3 not Seifert fibered ⇒ the components of Diff(M3) are contractible
[Gabai and others, 1990s]

dimM = 4: “nothing known” [Hatcher, 2012]

Results on πi (Diff(Sn)) in the stable range n − i � 0 [Farrell-Hsiang, 1970s];
π1(Diff(S5)) = ?



(1) State of affairs for Diff(M)

What is known about Diff(M)?

Diff(S1) ∼ Isom(S1) = O(2)

Diff(S2) ∼ O(3) [Smale 1958]

Diff(T 2) ∼
∐

GL(2,Z) T
2; components of Diff(Σg ), g > 1, are contractible.

[Eells and others, 1970s]

Diff(S3) ∼ O(4) [Hatcher 1983]

M3 not Seifert fibered ⇒ the components of Diff(M3) are contractible
[Gabai and others, 1990s]

dimM = 4: “nothing known” [Hatcher, 2012]

Results on πi (Diff(Sn)) in the stable range n − i � 0 [Farrell-Hsiang, 1970s];
π1(Diff(S5)) = ?



(1) State of affairs for Diff(M)

What is known about Diff(M)?

Diff(S1) ∼ Isom(S1) = O(2)

Diff(S2) ∼ O(3) [Smale 1958]

Diff(T 2) ∼
∐

GL(2,Z) T
2; components of Diff(Σg ), g > 1, are contractible.

[Eells and others, 1970s]

Diff(S3) ∼ O(4) [Hatcher 1983]

M3 not Seifert fibered ⇒ the components of Diff(M3) are contractible
[Gabai and others, 1990s]

dimM = 4: “nothing known” [Hatcher, 2012]

Results on πi (Diff(Sn)) in the stable range n − i � 0 [Farrell-Hsiang, 1970s];
π1(Diff(S5)) = ?



(1) State of affairs for Diff(M)

What is known about Diff(M)?

Diff(S1) ∼ Isom(S1) = O(2)

Diff(S2) ∼ O(3) [Smale 1958]

Diff(T 2) ∼
∐

GL(2,Z) T
2; components of Diff(Σg ), g > 1, are contractible.

[Eells and others, 1970s]

Diff(S3) ∼ O(4) [Hatcher 1983]

M3 not Seifert fibered ⇒ the components of Diff(M3) are contractible
[Gabai and others, 1990s]

dimM = 4: “nothing known” [Hatcher, 2012]

Results on πi (Diff(Sn)) in the stable range n − i � 0 [Farrell-Hsiang, 1970s];
π1(Diff(S5)) = ?



(1) State of affairs for Diff(M)

What is known about Diff(M)?

Diff(S1) ∼ Isom(S1) = O(2)

Diff(S2) ∼ O(3) [Smale 1958]

Diff(T 2) ∼
∐

GL(2,Z) T
2; components of Diff(Σg ), g > 1, are contractible.

[Eells and others, 1970s]

Diff(S3) ∼ O(4) [Hatcher 1983]

M3 not Seifert fibered ⇒ the components of Diff(M3) are contractible
[Gabai and others, 1990s]

dimM = 4: “nothing known” [Hatcher, 2012]

Results on πi (Diff(Sn)) in the stable range n − i � 0 [Farrell-Hsiang, 1970s];
π1(Diff(S5)) = ?



(1) State of affairs for Diff(M)

What is known about Diff(M)?

Diff(S1) ∼ Isom(S1) = O(2)

Diff(S2) ∼ O(3) [Smale 1958]

Diff(T 2) ∼
∐

GL(2,Z) T
2; components of Diff(Σg ), g > 1, are contractible.

[Eells and others, 1970s]

Diff(S3) ∼ O(4) [Hatcher 1983]

M3 not Seifert fibered ⇒ the components of Diff(M3) are contractible
[Gabai and others, 1990s]

dimM = 4: “nothing known” [Hatcher, 2012]

Results on πi (Diff(Sn)) in the stable range n − i � 0 [Farrell-Hsiang, 1970s];
π1(Diff(S5)) = ?



Sasakian manifolds

Let (M, ω) be a compact integral Kähler manifold (⇔ M is smooth
projective algebraic). There is a circle bundle (S ,∇S)→ M with connection
associated to (M, ω) with c1(ΩS) = ω. For k ∈ Z, we get (Sk ,∇k) associated
to kω. Let Mk be the total space of Sk .

Example: (CPn, ωFS) has CPn

1 ≈ S2n+1 and CPn

±k ≈ Lk = S2n+1/Zk .

Mk is a Sasakian manifold of dimension 2`+ 1 if dimCM = `. (Mk has a
canonical Riemannian metric ḡ , a canonical vector field given by unit vertical
vectors ξ̄, an “almost complex structure” Φ with Φ2 = −I + ξ̄] ⊗ ξ̄,
compatibility of the LC connection with Φ, etc.)
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Sasakian manifolds

The geometry of Mk is determined by the geometry of M.

Lemma

Let X ,Y ,Z ,W be tangent vectors to (M, ω, 〈·, ·〉), and let X L, etc. be their
horizontal lifts to (Mk , ḡ). Then

ḡ(R̄(X L,Y L)ZL,W L) = 〈R(X ,Y )Z ,W 〉+ k2[−〈JY ,Z 〉〈JX ,W 〉
+〈JX ,Z 〉〈JY ,W 〉+ 2〈JX ,Y 〉〈JZ ,W 〉],

ḡ(R̄(X L,Y L)ZL, ξ̄) = 0,

ḡ(R̄(ξ̄,X L)Y L, ξ̄) = k2〈X ,Y 〉.



Sasakian manifolds

Theorem (Morimoto 1964)

Let M be a compact Sasakian manifold with compact leaves for the characteristic
vector field. Then there exists a compact Kähler manifold M such that M is the
total space of a circle bundle S over M.

Thus M comes with a natural (isometric) circle action, rotation in the fibers
of S .

Question: This circle action gives an element in π1(Diff(M)) and in fact an
element of π1(Isom(M)). When is this element nonzero? When does it have
infinite order?
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Main results

Example: For M = CPn
1 = S2n+1, the circle action gives a generator of

π1(Isom(M)) = π1(SO(2n + 2)) = Z2. This element has order two.

Theorem

(i) Let (M, ω) be an integral Kähler surface. Then the circle action is an element
of infinite order in π1(Diff(Mk)) and in π1(Isom(M)) for k � 0.

(ii) Let (M, ω) be an integral Kähler manifold of real dimension 4`. If the
signature σ(M) 6= 0, then the circle action is an element of infinite order in
π1(Diff(Mk)) for k � 0.

Any compact Kähler surface is deformable to an algebraic surface, so
Theorem (i) for Diff(M) applies to all Kähler surfaces.
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(2) Geometry/topology of LM = Maps(S1,M)

Mn is an oriented Riemannian manifold. TγLM is the set of “vector fields
along γ.”

γ

γs

= γ0

γ(θ0)

γs(θ0)
γ̇s(θ0)

γ̇(θ1)

γ(θ1) = γ(θ2)

γ̇(θ2)

So really TγLM = Γ(γ∗TM) ∼= Γ(S1 ×Rn → S1). This makes LM an infinite
dimensional Banach/Fréchet manifold.

The structure group of TM is GL(n,R); the structure group of TLM is
G = Maps(S1,GL(n,R)), the gauge transformations of S1 × Rn → S1.
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The structure group of TM is GL(n,R); the structure group of TLM is
G = Maps(S1,GL(n,R)), the gauge transformations of S1 × Rn → S1.



(2) Geometry/topology of LM = Maps(S1,M)

Mn is an oriented Riemannian manifold. TγLM is the set of “vector fields
along γ.”

γ

γs

= γ0

γ(θ0)

γs(θ0)

γ̇s(θ0)

γ̇(θ1)

γ(θ1) = γ(θ2)

γ̇(θ2)

So really TγLM = Γ(γ∗TM) ∼= Γ(S1 ×Rn → S1). This makes LM an infinite
dimensional Banach/Fréchet manifold.
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The structure group of TM is GL(n,R); the structure group of TLM is
G = Maps(S1,GL(n,R)), the gauge transformations of S1 × Rn → S1.



(2) Geometry/topology of LM = Maps(S1,M)

Mn is an oriented Riemannian manifold. TγLM is the set of “vector fields
along γ.”

γ

γs

= γ0

γ(θ0)

γs(θ0)
γ̇s(θ0)

γ̇(θ1)

γ(θ1) = γ(θ2)

γ̇(θ2)

So really TγLM = Γ(γ∗TM) ∼= Γ(S1 ×Rn → S1). This makes LM an infinite
dimensional Banach/Fréchet manifold.
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(2a) Natural connections on LM

Pick a Sobolev parameter s > 1/2. We put an s-inner product on TγLM by

〈X ,Y 〉s =
1

2π

∫
S1

〈(1 + ∆)sX (α),Y (α)〉γ(α)dα, X ,Y ∈ Γ(γ∗TM).

Here ∆ = D∗D, D = D
d γ̇ , the covariant derivative along γ.

Now LM is a Hilbert/Riemannian manifold. For s = 0, we get the standard
L2 inner product on LM.

Think of s as an annoying regularization parameter. We should study how our
theory depends on s, and take the part of the theory that is independent of s.
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Natural connections on LM

The Sobolev-s metric makes LM a Riemannian manifold. The Levi-Civita
connection ∇s on LM is determined by

〈∇s
YX ,Z 〉s = X 〈Y ,Z 〉s + Y 〈X ,Z 〉s − Z 〈X ,Y 〉s

+〈[X ,Y ],Z 〉s + 〈[Z ,X ],Y 〉s − 〈[Y ,Z ],X 〉s .

since the right hand side is a continuous linear functional of
Z ∈ TγLM = Γ(γ∗TM) (for the right topology on the space of sections).



Natural connections on LM

Set evθ : LM → M, evθ(γ) = γ(θ).

Proposition

For X ,Y ∈ TγLM, ∇0
XY (γ)(θ) = ev∗θ∇

LC ,M
X Y (γ), and

∇1
XY (γ)(θ)

= ∇0
XY (γ)(θ) +

1

2
(1 + ∆)−1 [−∇γ̇(R(X , γ̇)Y )(θ)

−R(X , γ̇)∇γ̇Y (θ)−∇γ̇(R(Y , γ̇)X )(θ)− R(Y , γ̇)∇γ̇X (θ)

+(R(X ,∇γ̇Y )γ̇)(θ) + (R(Y ,∇γ̇X )γ̇)(θ)]

= [X (Y ) + ω1
X (Y )](γ)(θ).

The connection 1-form and curvature 2-form
ω1
X ∈ End(TγLM) = End(Γ(γ∗TM)),Ω1 = dω1 + ω1 ∧ ω1 are zeroth order

ΨDOs acting on Y ∈ TγLM = Γ(S1 × Rn → S1).
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ΨDOs

Let Ω ⊂ Rn be a precompact domain.

For
∂α = (∂x1 )α1 · . . . · (∂xn)αn , ξα = ξα1

1 · . . . · ξ
αn
n ,

let D =
∑
|α|≤n0

aα(x)∂α : C∞c (Ω)→ C∞c (Ω) be a differential operator. By
Fourier transform and Fourier inversion,

Df (x) =

∫
T∗Ω

e i(x−y)·ξσD(x , ξ)f (y) dy dξ

where the symbol of D is the polynomial σD(x , ξ) =
∑
|α|≤n0

1
i |α|

aα(x)ξα.

σD ∼ |ξ|n0 as |ξ| → ∞. ΨDOs are defined by the same integral, but with symbol
σ(x , ξ) ∼

∑
k∈Z≥0

an0−k(x)|ξ|n0−k growing like |ξ|n0 , where the order n0 of D can

be any real number.



ΨDOs

This extends to vector valued operators and then to operators on sections of
bundles E → M over closed manifolds. For x ∈ M, ξ ∈ T ∗M,
σ(x , ξ) ∈ Hom(Ex ,Ex).

D is elliptic if σn0 (x , ξ) is invertible for ξ 6= 0. Standard Laplacian operators
are elliptic, with top symbol σ2(∆)(x , ξ) = |ξ|2Id, as are their inverses
(Green’s operators), with top symbol σ−2(∆−1)(x , ξ) = |ξ|−2Id.

Just like DO, ΨDO(E ) forms a graded algebra, and includes all Green’s
operators, heat operators, and operators given by smooth kernels. Powers of
elliptic operators, like (1 + ∆)s , are again ΨDOs.

Even if an operator is nonlocal, like (1 + ∆)−1, its symbol terms are
local/computable.
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Just like DO, ΨDO(E ) forms a graded algebra, and includes all Green’s
operators, heat operators, and operators given by smooth kernels. Powers of
elliptic operators, like (1 + ∆)s , are again ΨDOs.

Even if an operator is nonlocal, like (1 + ∆)−1, its symbol terms are
local/computable.
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(2b) Characteristic classes on TLM

For characteristic classes on G -bundles, we need Ad-invariant functions on
the Lie algebra g. The LC connection ∇1 has connection/curvature forms
taking values in ΨDO≤0 = g, so the structure group is ΨDO∗0 , the group of
invertible zeroth order ΨDOs. Note that ΨDO∗0 ⊃ G, so we are extending the
structure group.

While u(n) has invariant polynomials generated by Tr(Ak) coming from its
unique trace, ΨDO≤0 (on sections of a bundle E → N) has essentially two
traces (!):

the Wodzicki residue

resW (A) =

∫
S∗N

trx(σ−n(A)(x , ξ)) dξ dx ,

where S∗N is the unit cosphere bundle of Nn

the leading order trace

trlo(A) =

∫
S∗N

trx(σ0(A)(x , ξ)) dξ dx
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Wodzicki-Chern classes

The theory of characteristic classes carries over to TLM. Let Ω be the curvature
of a ΨDO∗0-connection on TLM.

Definition:

(i) The ith Wodzicki-Chern character class of LM is

chWi (LM) = [resW (Ωi )]

=

[∫
S∗S1

trx(σ−1(Ωi )(x , ξ)) dξ dx

]
∈ H2i (LM,C).

The WCC forms are locally computable.



(3) Chern-Simons classes on TLM

Problem: chWi (LM) = 0. Since chWi (LM) is independent of connection, we
can compute it for the L2 connection:

chWi (LM) =

[∫
S∗S1

trx(σ−1((Ωs=0)i )(x , ξ)) dξ dx

]
= [0] = 0.

Solution: Since the chW form vanishes pointwise, we can hope to construct
Wodzicki-Chern-Simons forms.

If Chern character forms vanish for two connections ∇0,∇1 on E → N, then
Chern-Simons classes are defined: there is an explicit transgression form
Tchi ∈ Λ2i−1(N) with

chi (Ω0)− chi (Ω1) = d Tchi (∇0,∇1).

If e.g. ∇0,∇1 are flat, or if dim(N) = 2i − 1, then Tchi (∇0,∇1) is closed
and defines the Chern-Simons class

CSi (∇0,∇1) ∈ H2i−1(N,C).
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WCS classes on TLM

LM is infinite dimensional, but the local nature of resW implies chWi (Ωs) ≡ 0
as a form if dim M = 2i − 1.

Definition:

Let dim M = 2i − 1. The (2i-1)-Wodzicki-Chern-Simons class is

CSW
2i−1(LM) = [TchWi (∇s=0,∇s=1)] ∈ H2i−1(LM,C).

TchWi involves resW , so it is locally computable.

Proposition

At a loop γ ∈ LM,

CSW
2i−1(X1, ...,X2i−1)(γ)

=
i

2i−2

∑
σ

sgn(σ)

∫
γ

tr[(R(Xσ(1), ·)γ̇)(ΩM)i−1(Xσ(2), ...,Xσ(2i−1))].
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Summary of WCS classes

Given (M2i−1, g), we get locally computable classes

CSW
2i−1(g) ∈ H2i−1(LM,C)

associated to the 2i-component of the Chern character.

Remarks:
We can repeat this construction for any characteristic class of degree 2i , e.g.
some product of Chern classes.

By curvature tensor symmetries, CSW
4i−1(g) = 0, so from now on, dim

M = 4i + 1.

If we use ∇0,∇s instead of ∇0,∇1 in the definition of the WCS form, we just
change CSW to s · CSW .
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(3) Relating WCS classes on TLM to Diff(M)

We have a family of Sasakian manifold Mk associated to an integral Kähler
manifold M4i . Mk comes with a natural circle action a : S1 ×Mk → Mk .

Since

Maps(S1 ×Mk ,Mk) = Maps(S1,Maps(Mk ,Mk))

= Maps(Mk ,Maps(S1,Mk)),

we get aD : S1 → Diff(Mk) and a class

[aD ] ∈ π1(Diff(Mk)).

We also get aL : Mk → Maps(S1,Mk) = LMk and a class

[aL] = aL∗[Mk ] ∈ H4i+1(LMk ,C).

Fact:
[aL] 6= 0⇒ [aD ] 6= 0.
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Using WCS classes to detect elements of π1(Diff(Mk))

We have [aD ] ∈ π1(Diff(Mk)), [aL] ∈ H4i+1(LMk ,C) with

[aL] 6= 0⇒ [aD ] 6= 0.

So:

∫
[aL]

CSW
4k+1 6= 0⇒ [aD ] has infinite order.

∫
[aL]

CSW
4k+1 =

∫
aL∗[Mk ]

CSW
4k+1 =

∫
Mk

aL,∗CSW
4k+1

is locally computable.
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Using WCS classes to detect elements of π1(Diff(Mk))

Lemma

Let M be a Kähler surface with local o.n. frame {e2, Je2, e3, Je3} and let ξ̄ be the
unit vector along the circle fiber of Mk . Then

aL,∗CSW
5,γ(ξ̄, e2, Je2, e3, Je3)

=
3k2

5

{
32π2p1(Ω)(e2, Je2, e3, Je3) + 32k2[3R(e2, Je2, e3, Je3)

−R(e2, e3, e2, e3)− R(e2, Je3, e2, Je3)

+R(e2, Je2, e2, Je2) + R(e3, Je3, e3, Je3)]

+192k4
}
,

where p1(Ω) is the first Pontrjagin form of M.

Clearly ∫
Mk

aL,∗CSW
5 6= 0 for k � 0.



Kähler surfaces

Theorem

Let (M, ω) be a compact Kähler surface. Then the circle action is an element of
infinite order in π1(Diff(Mk)) and in π1(Isom(Mk)) for k � 0.

We can do more careful calculations for specific Kähler surfaces.

Proposition

(i) π1(Diff(CP2

k) is infinite for k 6= ±1.
(ii) Let M be a compact projective K3 surface. Then π1(Diff(Mk)) is infinite for
all k.
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S5 is difficult

Example: There is a family of Sasaki-Einstein metrics ga, a ∈ (0, 1), on B5

which match up nicely on ∂B5 to give metrics on S2 × S3. We get∫
[aL]

CSW
5 (ga) = −1849π4

37750
(−1 + a2),

so π1(Diff(S2 × S3)) is infinite.

At a = 1, the metric glues up to the standard metric on S5. But now we
conclude nothing about π1(Diff(S5)).
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Higher dimensions

For any r , on Mk

a∗CSW
4r+1(γ) =

2r∑
i=1

αik
2i = α1k

2 +
2r∑
i=2

αik
2i

with αi ∈ Λ4r+1(Mk).

Lemma

α1(ξ̄, ·) is a multiple of ch2r (ΩM).

As before, if [ch2r ] 6= 0 ∈ H2r (M), then for some cycle [σ] ∈ H2r (M),∫
σ

a∗CSW
4r+1(γ) =

∑(∫
σ

αi

)
k2i =

(∫
σ

α1

)
k2 + h.o. 6= 0

for k � 0. As before, this implies π1(Diff(Mk)) is infinite.



Higher dimensions

For any r , on Mk

a∗CSW
4r+1(γ) =

2r∑
i=1

αik
2i = α1k

2 +
2r∑
i=2

αik
2i

with αi ∈ Λ4r+1(Mk).

Lemma

α1(ξ̄, ·) is a multiple of ch2r (ΩM).

As before, if [ch2r ] 6= 0 ∈ H2r (M), then for some cycle [σ] ∈ H2r (M),∫
σ

a∗CSW
4r+1(γ) =

∑(∫
σ

αi

)
k2i =

(∫
σ

α1

)
k2 + h.o. 6= 0

for k � 0. As before, this implies π1(Diff(Mk)) is infinite.



Higher dimensions

For any r , on Mk

a∗CSW
4r+1(γ) =

2r∑
i=1

αik
2i = α1k

2 +
2r∑
i=2

αik
2i

with αi ∈ Λ4r+1(Mk).

Lemma

α1(ξ̄, ·) is a multiple of ch2r (ΩM).

As before, if [ch2r ] 6= 0 ∈ H2r (M), then for some cycle [σ] ∈ H2r (M),∫
σ

a∗CSW
4r+1(γ) =

∑(∫
σ

αi

)
k2i =

(∫
σ

α1

)
k2 + h.o. 6= 0

for k � 0. As before, this implies π1(Diff(Mk)) is infinite.



Higher dimensions

For any r , on Mk

a∗CSW
4r+1(γ) =

2r∑
i=1

αik
2i = α1k

2 +
2r∑
i=2

αik
2i

with αi ∈ Λ4r+1(Mk).

Lemma

α1(ξ̄, ·) is a multiple of ch2r (ΩM).

As before, if [ch2r ] 6= 0 ∈ H2r (M), then for some cycle [σ] ∈ H2r (M),∫
σ

a∗CSW
4r+1(γ) =

∑(∫
σ

αi

)
k2i =

(∫
σ

α1

)
k2 + h.o. 6= 0

for k � 0. As before, this implies π1(Diff(Mk)) is infinite.



Higher dimensions

Theorem

(i) π1(Diff(CP2i

k )) is infinite for k � 0.
(ii) Let M have real dimension 4i . If σ(M) 6= 0, then π1(Diff(Mk)) is infinite for
k � 0.

Proof: If σ(M) 6= 0, then some Pontrjagin number is nonzero, which implies that
some Chern character component ch2r is nonzero.



Future directions

Every symplectic manifold is “Kähler except for integrability.” Do these
results carry over for line bundles over integral symplectic manifolds?

Find a nonstandard metric on S5 such that
∫

[aL]
CSW

5 (g) 6= 0, or prove that

no such metric exists.
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