Chern-Simons classes on loop spaces and diffeomorphism groups

Steve Rosenberg (with Y. Maeda and F. Torres-Ardila)

Boston University

October 23, 2015

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Diffeomorphism groups, Sasakian manifolds and statement of the main results

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2 Loop space geometry

- Natural connections on LM
- Characteristic classes on TLM

Ohern-Simons classes on TLM

4 Relating CS classes on TLM to Diff(M)

What is known about Diff(M)?

・ロト・日本・モト・モート ヨー うへで

What is known about Diff(M)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $\operatorname{Diff}(S^1) \sim \operatorname{Isom}(S^1) = O(2)$

What is known about Diff(M)?

- $\operatorname{Diff}(S^1) \sim \operatorname{Isom}(S^1) = O(2)$
- Diff(S²) ~ O(3) [Smale 1958]

 $\operatorname{Diff}(T^2) \sim \coprod_{GL(2,\mathbb{Z})} T^2$; components of $\operatorname{Diff}(\Sigma^g)$, g > 1, are contractible. [Eells and others, 1970s]

・ロト・日本・モー・ 日・ うへぐ

What is known about Diff(M)?

- $\operatorname{Diff}(S^1) \sim \operatorname{Isom}(S^1) = O(2)$
- Diff(S²) ~ O(3) [Smale 1958]

 $\operatorname{Diff}(T^2) \sim \coprod_{GL(2,\mathbb{Z})} T^2$; components of $\operatorname{Diff}(\Sigma^g)$, g > 1, are contractible. [Eells and others, 1970s]

• Diff(S³) ~ O(4) [Hatcher 1983]

 M^3 not Seifert fibered \Rightarrow the components of $\text{Diff}(M^3)$ are contractible [Gabai and others, 1990s]

What is known about Diff(M)?

- $\operatorname{Diff}(S^1) \sim \operatorname{Isom}(S^1) = O(2)$
- Diff(S²) ~ O(3) [Smale 1958]

 $\operatorname{Diff}(T^2) \sim \coprod_{GL(2,\mathbb{Z})} T^2$; components of $\operatorname{Diff}(\Sigma^g)$, g > 1, are contractible. [Eells and others, 1970s]

Diff(S³) ∼ O(4) [Hatcher 1983]

 M^3 not Seifert fibered \Rightarrow the components of $\text{Diff}(M^3)$ are contractible [Gabai and others, 1990s]

• dimM = 4: "nothing known" [Hatcher, 2012]

What is known about Diff(M)?

- $\operatorname{Diff}(S^1) \sim \operatorname{Isom}(S^1) = O(2)$
- Diff(*S*²) ~ *O*(3) [Smale 1958]

 $\operatorname{Diff}(T^2) \sim \coprod_{GL(2,\mathbb{Z})} T^2$; components of $\operatorname{Diff}(\Sigma^g)$, g > 1, are contractible. [Eells and others, 1970s]

Diff(S³) ∼ O(4) [Hatcher 1983]

 M^3 not Seifert fibered \Rightarrow the components of $\text{Diff}(M^3)$ are contractible [Gabai and others, 1990s]

- dimM = 4: "nothing known" [Hatcher, 2012]
- Results on $\pi_i(\text{Diff}(S^n))$ in the stable range $n i \gg 0$ [Farrell-Hsiang, 1970s]; $\pi_1(\text{Diff}(S^5)) = ?$

Let (M, ω) be a compact integral Kähler manifold ($\Leftrightarrow M$ is smooth projective algebraic). There is a circle bundle $(S, \nabla_S) \to M$ with connection associated to (M, ω) with $c_1(\Omega_S) = \omega$. For $k \in \mathbb{Z}$, we get (S_k, ∇_k) associated to $k\omega$. Let \overline{M}_k be the total space of S_k .

Let (M, ω) be a compact integral Kähler manifold ($\Leftrightarrow M$ is smooth projective algebraic). There is a circle bundle $(S, \nabla_S) \to M$ with connection associated to (M, ω) with $c_1(\Omega_S) = \omega$. For $k \in \mathbb{Z}$, we get (S_k, ∇_k) associated to $k\omega$. Let \overline{M}_k be the total space of S_k .

Example: $(\mathbb{CP}^n, \omega^{FS})$ has $\overline{\mathbb{CP}}_1^n \approx S^{2n+1}$ and $\overline{\mathbb{CP}}_{\pm k}^n \approx L_k = S^{2n+1}/\mathbb{Z}_k$.

Let (M, ω) be a compact integral Kähler manifold ($\Leftrightarrow M$ is smooth projective algebraic). There is a circle bundle $(S, \nabla_S) \to M$ with connection associated to (M, ω) with $c_1(\Omega_S) = \omega$. For $k \in \mathbb{Z}$, we get (S_k, ∇_k) associated to $k\omega$. Let \overline{M}_k be the total space of S_k .

Example:
$$(\mathbb{CP}^n, \omega^{FS})$$
 has $\overline{\mathbb{CP}}_1^n \approx S^{2n+1}$ and $\overline{\mathbb{CP}}_{\pm k}^n \approx L_k = S^{2n+1}/\mathbb{Z}_k$.

 \overline{M}_k is a Sasakian manifold of dimension $2\ell + 1$ if dim_C $M = \ell$. (\overline{M}_k has a canonical Riemannian metric \overline{g} , a canonical vector field given by unit vertical vectors $\overline{\xi}$, an "almost complex structure" Φ with $\Phi^2 = -I + \overline{\xi}^{\sharp} \otimes \overline{\xi}$, compatibility of the LC connection with Φ , etc.)

The geometry of \overline{M}_k is determined by the geometry of M.

Lemma

Let X, Y, Z, W be tangent vectors to $(M, \omega, \langle \cdot, \cdot \rangle)$, and let X^L , etc. be their horizontal lifts to $(\overline{M}_k, \overline{g})$. Then

$$\begin{split} \bar{g}(\bar{R}(X^{L},Y^{L})Z^{L},W^{L}) &= \langle R(X,Y)Z,W\rangle + k^{2}[-\langle JY,Z\rangle\langle JX,W\rangle \\ &+ \langle JX,Z\rangle\langle JY,W\rangle + 2\langle JX,Y\rangle\langle JZ,W\rangle], \\ \bar{g}(\bar{R}(X^{L},Y^{L})Z^{L},\bar{\xi}) &= 0, \\ \bar{g}(\bar{R}(\bar{\xi},X^{L})Y^{L},\bar{\xi}) &= k^{2}\langle X,Y\rangle. \end{split}$$

Sasakian manifolds

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Let \overline{M} be a compact Sasakian manifold with compact leaves for the characteristic vector field. Then there exists a compact Kähler manifold M such that \overline{M} is the total space of a circle bundle S over M.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let \overline{M} be a compact Sasakian manifold with compact leaves for the characteristic vector field. Then there exists a compact Kähler manifold M such that \overline{M} is the total space of a circle bundle S over M.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let \overline{M} be a compact Sasakian manifold with compact leaves for the characteristic vector field. Then there exists a compact Kähler manifold M such that \overline{M} is the total space of a circle bundle S over M.

Thus \overline{M} comes with a natural (isometric) circle action, rotation in the fibers of *S*.

Let \overline{M} be a compact Sasakian manifold with compact leaves for the characteristic vector field. Then there exists a compact Kähler manifold M such that \overline{M} is the total space of a circle bundle S over M.

Thus \overline{M} comes with a natural (isometric) circle action, rotation in the fibers of *S*.

Let \overline{M} be a compact Sasakian manifold with compact leaves for the characteristic vector field. Then there exists a compact Kähler manifold M such that \overline{M} is the total space of a circle bundle S over M.

Thus \overline{M} comes with a natural (isometric) circle action, rotation in the fibers of *S*.

(日) (同) (三) (三) (三) (○) (○)

Question: This circle action gives an element in $\pi_1(\text{Diff}(\overline{M}))$ and in fact an element of $\pi_1(\text{Isom}(\overline{M}))$. When is this element nonzero? When does it have infinite order?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

(i) Let (M, ω) be an integral Kähler surface. Then the circle action is an element of infinite order in $\pi_1(\text{Diff}(\overline{M}_k))$ and in $\pi_1(\text{Isom}(\overline{M}))$ for $k \gg 0$.

(ii) Let (M, ω) be an integral Kähler manifold of real dimension 4 ℓ . If the signature $\sigma(M) \neq 0$, then the circle action is an element of infinite order in $\pi_1(\text{Diff}(\overline{M}_k))$ for $k \gg 0$.

Theorem

(i) Let (M, ω) be an integral Kähler surface. Then the circle action is an element of infinite order in $\pi_1(\text{Diff}(\overline{M}_k))$ and in $\pi_1(\text{Isom}(\overline{M}))$ for $k \gg 0$.

(ii) Let (M, ω) be an integral Kähler manifold of real dimension 4 ℓ . If the signature $\sigma(M) \neq 0$, then the circle action is an element of infinite order in $\pi_1(\operatorname{Diff}(\overline{M}_k))$ for $k \gg 0$.

Any compact Kähler surface is deformable to an algebraic surface, so Theorem (i) for Diff(M) applies to all Kähler surfaces.

 M^n is an oriented Riemannian manifold. $\mathcal{T}_\gamma LM$ is the set of "vector fields along γ ."

 M^n is an oriented Riemannian manifold. $\mathcal{T}_\gamma LM$ is the set of "vector fields along $\gamma."$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 M^n is an oriented Riemannian manifold. $\mathcal{T}_\gamma LM$ is the set of "vector fields along $\gamma."$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 M^n is an oriented Riemannian manifold. $\mathcal{T}_{\gamma}LM$ is the set of "vector fields along γ ."

 M^n is an oriented Riemannian manifold. $\mathcal{T}_{\gamma}LM$ is the set of "vector fields along γ ."

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 M^n is an oriented Riemannian manifold. $\mathcal{T}_{\gamma} LM$ is the set of "vector fields along γ ."

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 M^n is an oriented Riemannian manifold. $\mathcal{T}_{\gamma} LM$ is the set of "vector fields along γ ."

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 M^n is an oriented Riemannian manifold. $\mathcal{T}_\gamma LM$ is the set of "vector fields along γ ."

So really $T_{\gamma}LM = \Gamma(\gamma^* TM) \cong \Gamma(S^1 \times \mathbb{R}^n \to S^1)$. This makes LM an infinite dimensional Banach/Fréchet manifold.

 M^n is an oriented Riemannian manifold. $T_{\gamma}LM$ is the set of "vector fields along γ ."

So really $T_{\gamma}LM = \Gamma(\gamma^* TM) \cong \Gamma(S^1 \times \mathbb{R}^n \to S^1)$. This makes LM an infinite dimensional Banach/Fréchet manifold.

The structure group of *TM* is $GL(n, \mathbb{R})$; the structure group of *TLM* is $\mathcal{G} = Maps(S^1, GL(n, \mathbb{R}))$, the gauge transformations of $S^1 \times \mathbb{R}^n \to S^1$.

Pick a Sobolev parameter s > 1/2. We put an *s*-inner product on $T_{\gamma}LM$ by

$$\langle X,Y\rangle_s = \frac{1}{2\pi} \int_{S^1} \langle (1+\Delta)^s X(\alpha),Y(\alpha) \rangle_{\gamma(\alpha)} d\alpha, \ \ X,Y \in \Gamma(\gamma^* TM).$$

Here $\Delta = D^*D$, $D = \frac{D}{d\dot{\gamma}}$, the covariant derivative along γ .

Now *LM* is a Hilbert/Riemannian manifold. For s = 0, we get the standard L^2 inner product on *LM*.

Pick a Sobolev parameter s > 1/2. We put an *s*-inner product on $T_{\gamma}LM$ by

$$\langle X,Y\rangle_s = \frac{1}{2\pi} \int_{S^1} \langle (1+\Delta)^s X(\alpha),Y(\alpha) \rangle_{\gamma(\alpha)} d\alpha, \ \ X,Y \in \Gamma(\gamma^* TM).$$

Here $\Delta = D^*D$, $D = \frac{D}{d\dot{\gamma}}$, the covariant derivative along γ .

Now *LM* is a Hilbert/Riemannian manifold. For s = 0, we get the standard L^2 inner product on *LM*.

Think of s as an annoying regularization parameter. We should study how our theory depends on s, and take the part of the theory that is independent of s.

(日) (同) (三) (三) (三) (○) (○)

The Sobolev-s metric makes LM a Riemannian manifold. The Levi-Civita connection ∇^s on LM is determined by

$$\begin{split} \langle \nabla_Y^s X, Z \rangle_s &= X \langle Y, Z \rangle_s + Y \langle X, Z \rangle_s - Z \langle X, Y \rangle_s \\ &+ \langle [X, Y], Z \rangle_s + \langle [Z, X], Y \rangle_s - \langle [Y, Z], X \rangle_s. \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

since the right hand side is a *continuous* linear functional of $Z \in T_{\gamma}LM = \Gamma(\gamma^*TM)$ (for the right topology on the space of sections).

Natural connections on LM

Set $ev_{\theta} : LM \to M, ev_{\theta}(\gamma) = \gamma(\theta).$

Natural connections on LM

Set
$$ev_{\theta} : LM \to M, ev_{\theta}(\gamma) = \gamma(\theta).$$

Proposition

For
$$X,Y\in T_{\gamma}LM$$
, $abla_X^0Y(\gamma)(heta)=\mathrm{ev}_{ heta}^*
abla_X^{LC,M}Y(\gamma)$, and

$$\begin{aligned} \nabla^{1}_{X}Y(\gamma)(\theta) \\ &= \nabla^{0}_{X}Y(\gamma)(\theta) + \frac{1}{2}(1+\Delta)^{-1}\left[-\nabla_{\dot{\gamma}}(R(X,\dot{\gamma})Y)(\theta) \right. \\ &\quad \left. -R(X,\dot{\gamma})\nabla_{\dot{\gamma}}Y(\theta) - \nabla_{\dot{\gamma}}(R(Y,\dot{\gamma})X)(\theta) - R(Y,\dot{\gamma})\nabla_{\dot{\gamma}}X(\theta) \right. \\ &\quad \left. +(R(X,\nabla_{\dot{\gamma}}Y)\dot{\gamma})(\theta) + (R(Y,\nabla_{\dot{\gamma}}X)\dot{\gamma})(\theta)\right] \\ &= \left[X(Y) + \omega^{1}_{X}(Y)\right](\gamma)(\theta). \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで
Natural connections on LM

Set
$$ev_{\theta} : LM \to M, ev_{\theta}(\gamma) = \gamma(\theta).$$

Proposition

For
$$X, Y \in T_{\gamma}LM$$
, $\nabla^{0}_{X}Y(\gamma)(\theta) = ev^{*}_{\theta}\nabla^{LC,M}_{X}Y(\gamma)$, and

$$\begin{aligned} \nabla^{1}_{X}Y(\gamma)(\theta) \\ &= \nabla^{0}_{X}Y(\gamma)(\theta) + \frac{1}{2}(1+\Delta)^{-1}\left[-\nabla_{\dot{\gamma}}(R(X,\dot{\gamma})Y)(\theta) \right. \\ &\quad -R(X,\dot{\gamma})\nabla_{\dot{\gamma}}Y(\theta) - \nabla_{\dot{\gamma}}(R(Y,\dot{\gamma})X)(\theta) - R(Y,\dot{\gamma})\nabla_{\dot{\gamma}}X(\theta) \\ &\quad +(R(X,\nabla_{\dot{\gamma}}Y)\dot{\gamma})(\theta) + (R(Y,\nabla_{\dot{\gamma}}X)\dot{\gamma})(\theta)\right] \\ &= \left[X(Y) + \omega^{1}_{X}(Y)\right](\gamma)(\theta). \end{aligned}$$

The connection 1-form and curvature 2-form $\omega_X^1 \in End(T_{\gamma}LM) = End(\Gamma(\gamma^*TM)), \Omega^1 = d\omega^1 + \omega^1 \wedge \omega^1$ are zeroth order ΨDOs acting on $Y \in T_{\gamma}LM = \Gamma(S^1 \times \mathbb{R}^n \to S^1)$. Let $\Omega \subset \mathbb{R}^n$ be a precompact domain.

For

$$\partial^{\alpha} = (\partial_{x^1})^{\alpha_1} \cdot \ldots \cdot (\partial_{x^n})^{\alpha_n}, \ \xi^{\alpha} = \xi_1^{\alpha_1} \cdot \ldots \cdot \xi_n^{\alpha_n},$$

let $D = \sum_{|\alpha| \le n_0} a_{\alpha}(x) \partial^{\alpha} : C_c^{\infty}(\Omega) \to C_c^{\infty}(\Omega)$ be a differential operator. By Fourier transform and Fourier inversion,

$$Df(x) = \int_{T^*\Omega} e^{i(x-y)\cdot\xi} \sigma_D(x,\xi) f(y) \, dy \, d\xi$$

where the symbol of *D* is the polynomial $\sigma_D(x,\xi) = \sum_{|\alpha| \le n_0} \frac{1}{i^{|\alpha|}} a_\alpha(x)\xi^\alpha$. $\sigma_D \sim |\xi|^{n_0}$ as $|\xi| \to \infty$. Ψ DOs are defined by the same integral, but with symbol $\sigma(x,\xi) \sim \sum_{k \in \mathbb{Z}_{\ge 0}} a_{n_0-k}(x) |\xi|^{n_0-k}$ growing like $|\xi|^{n_0}$, where the order n_0 of *D* can be any real number.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

D is *elliptic* if $\sigma_{n_0}(x,\xi)$ is invertible for $\xi \neq 0$. Standard Laplacian operators are elliptic, with top symbol $\sigma_2(\Delta)(x,\xi) = |\xi|^2 \text{Id}$, as are their inverses (Green's operators), with top symbol $\sigma_{-2}(\Delta^{-1})(x,\xi) = |\xi|^{-2} \text{Id}$.

D is *elliptic* if $\sigma_{n_0}(x,\xi)$ is invertible for $\xi \neq 0$. Standard Laplacian operators are elliptic, with top symbol $\sigma_2(\Delta)(x,\xi) = |\xi|^2 \text{Id}$, as are their inverses (Green's operators), with top symbol $\sigma_{-2}(\Delta^{-1})(x,\xi) = |\xi|^{-2} \text{Id}$.

Just like DO, $\Psi DO(E)$ forms a graded algebra, and includes all Green's operators, heat operators, and operators given by smooth kernels. Powers of elliptic operators, like $(1 + \Delta)^s$, are again ΨDOs .

D is *elliptic* if $\sigma_{n_0}(x,\xi)$ is invertible for $\xi \neq 0$. Standard Laplacian operators are elliptic, with top symbol $\sigma_2(\Delta)(x,\xi) = |\xi|^2 \text{Id}$, as are their inverses (Green's operators), with top symbol $\sigma_{-2}(\Delta^{-1})(x,\xi) = |\xi|^{-2} \text{Id}$.

Just like DO, $\Psi DO(E)$ forms a graded algebra, and includes all Green's operators, heat operators, and operators given by smooth kernels. Powers of elliptic operators, like $(1 + \Delta)^s$, are again ΨDOs .

Even if an operator is nonlocal, like $(1 + \Delta)^{-1}$, its symbol terms are local/computable.

For characteristic classes on *G*-bundles, we need Ad-invariant functions on the Lie algebra \mathfrak{g} . The LC connection ∇^1 has connection/curvature forms taking values in $\Psi \mathrm{DO}_{\leq 0} = \mathfrak{g}$, so the structure group is $\Psi \mathrm{DO}_0^*$, the group of invertible zeroth order $\Psi \mathrm{DOs}$. Note that $\Psi \mathrm{DO}_0^* \supset \mathcal{G}$, so we are extending the structure group.

For characteristic classes on *G*-bundles, we need Ad-invariant functions on the Lie algebra \mathfrak{g} . The LC connection ∇^1 has connection/curvature forms taking values in $\Psi \mathrm{DO}_{\leq 0} = \mathfrak{g}$, so the structure group is $\Psi \mathrm{DO}_0^*$, the group of invertible zeroth order $\Psi \mathrm{DOs}$. Note that $\Psi \mathrm{DO}_0^* \supset \mathcal{G}$, so we are extending the structure group.

While $\mathfrak{u}(n)$ has invariant polynomials generated by $\operatorname{Tr}(A^k)$ coming from its unique trace, $\operatorname{\Psi DO}_{\leq 0}$ (on sections of a bundle $E \to N$) has essentially two traces (!):

For characteristic classes on *G*-bundles, we need Ad-invariant functions on the Lie algebra \mathfrak{g} . The LC connection ∇^1 has connection/curvature forms taking values in $\Psi \mathrm{DO}_{\leq 0} = \mathfrak{g}$, so the structure group is $\Psi \mathrm{DO}_0^*$, the group of invertible zeroth order $\Psi \mathrm{DOs}$. Note that $\Psi \mathrm{DO}_0^* \supset \mathcal{G}$, so we are extending the structure group.

While $\mathfrak{u}(n)$ has invariant polynomials generated by $\operatorname{Tr}(A^k)$ coming from its unique trace, $\operatorname{\Psi DO}_{\leq 0}$ (on sections of a bundle $E \to N$) has essentially two traces (!):

• the Wodzicki residue

$$\operatorname{res}^{W}(A) = \int_{S^*N} \operatorname{tr}_x(\sigma_{-n}(A)(x,\xi)) \ d\xi \ dx,$$

where S^*N is the unit cosphere bundle of N^n

For characteristic classes on *G*-bundles, we need Ad-invariant functions on the Lie algebra \mathfrak{g} . The LC connection ∇^1 has connection/curvature forms taking values in $\Psi \mathrm{DO}_{\leq 0} = \mathfrak{g}$, so the structure group is $\Psi \mathrm{DO}_0^*$, the group of invertible zeroth order $\Psi \mathrm{DOs}$. Note that $\Psi \mathrm{DO}_0^* \supset \mathcal{G}$, so we are extending the structure group.

While $\mathfrak{u}(n)$ has invariant polynomials generated by $\operatorname{Tr}(A^k)$ coming from its unique trace, $\operatorname{\Psi DO}_{\leq 0}$ (on sections of a bundle $E \to N$) has essentially two traces (!):

• the Wodzicki residue

$$\operatorname{res}^{W}(A) = \int_{S^*N} \operatorname{tr}_x(\sigma_{-n}(A)(x,\xi)) \ d\xi \ dx,$$

where S^*N is the unit cosphere bundle of N^n

• the leading order trace

$$\operatorname{tr}^{Io}(A) = \int_{S^*N} \operatorname{tr}_x(\sigma_0(A)(x,\xi)) d\xi dx$$

The theory of characteristic classes carries over to *TLM*. Let Ω be the curvature of a ΨDO_0^* -connection on *TLM*.

Definition:

(i) The ith Wodzicki-Chern character class of LM is

$$ch_i^W(LM) = [\operatorname{res}^W(\Omega^i)] \\ = \left[\int_{S^*S^1} \operatorname{tr}_x(\sigma_{-1}(\Omega^i)(x,\xi)) \ d\xi \ dx \right] \\ \in H^{2i}(LM,\mathbb{C}).$$

The WCC forms are locally computable.

Problem: $ch_i^W(LM) = 0$. Since $ch_i^W(LM)$ is independent of connection, we can compute it for the L^2 connection:

$$ch_i^W(LM) = \left[\int_{S^*S^1} \operatorname{tr}_x(\sigma_{-1}((\Omega^{s=0})^i)(x,\xi)) \ d\xi \ dx\right] = [0] = 0.$$

・ロト・日本・モン・モン・ ヨー シック

Problem: $ch_i^W(LM) = 0$. Since $ch_i^W(LM)$ is independent of connection, we can compute it for the L^2 connection:

$$ch_i^W(LM) = \left[\int_{S^*S^1} \operatorname{tr}_x(\sigma_{-1}((\Omega^{s=0})^i)(x,\xi)) \ d\xi \ dx\right] = [0] = 0.$$

 Solution: Since the ch^W form vanishes pointwise, we can hope to construct Wodzicki-Chern-Simons forms.

Problem: $ch_i^W(LM) = 0$. Since $ch_i^W(LM)$ is independent of connection, we can compute it for the L^2 connection:

$$ch_i^W(LM) = \left[\int_{S^*S^1} \operatorname{tr}_x(\sigma_{-1}((\Omega^{s=0})^i)(x,\xi)) \ d\xi \ dx\right] = [0] = 0.$$

• *Solution:* Since the *ch^W* form vanishes pointwise, we can hope to construct Wodzicki-Chern-Simons forms.

If Chern character forms vanish for two connections ∇_0, ∇_1 on $E \to N$, then Chern-Simons classes are defined: there is an explicit transgression form $Tch_i \in \Lambda^{2i-1}(N)$ with

$$ch_i(\Omega_0) - ch_i(\Omega_1) = d Tch_i(\nabla_0, \nabla_1).$$

Problem: $ch_i^W(LM) = 0$. Since $ch_i^W(LM)$ is independent of connection, we can compute it for the L^2 connection:

$$ch_i^W(LM) = \left[\int_{S^*S^1} \operatorname{tr}_x(\sigma_{-1}((\Omega^{s=0})^i)(x,\xi)) \ d\xi \ dx\right] = [0] = 0.$$

• *Solution:* Since the *ch^W* form vanishes pointwise, we can hope to construct Wodzicki-Chern-Simons forms.

If Chern character forms vanish for two connections ∇_0, ∇_1 on $E \to N$, then Chern-Simons classes are defined: there is an explicit transgression form $Tch_i \in \Lambda^{2i-1}(N)$ with

$$ch_i(\Omega_0) - ch_i(\Omega_1) = d Tch_i(\nabla_0, \nabla_1).$$

If e.g. ∇_0, ∇_1 are flat, or if dim(N) = 2i - 1, then $Tch_i(\nabla_0, \nabla_1)$ is closed and defines the Chern-Simons class

 $CS_i(\nabla_0, \nabla_1) \in H^{2i-1}(N, \mathbb{C}).$

LM is infinite dimensional, but the local nature of res^W implies $ch_i^W(\Omega^s) \equiv 0$ as a form if dim M = 2i - 1.

LM is infinite dimensional, but the local nature of res^{*W*} implies $ch_i^W(\Omega^s) \equiv 0$ as a form if dim M = 2i - 1.

Definition:

Let dim M = 2i - 1. The (2i-1)-Wodzicki-Chern-Simons class is

$$\mathsf{CS}^{W}_{2i-1}(\mathsf{LM}) = [\mathsf{Tch}^{W}_{i}(
abla^{s=0},
abla^{s=1})] \in \mathsf{H}^{2i-1}(\mathsf{LM}, \mathbb{C}).$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

LM is infinite dimensional, but the local nature of res^{*W*} implies $ch_i^W(\Omega^s) \equiv 0$ as a form if dim M = 2i - 1.

Definition:

Let dim M = 2i - 1. The (2i-1)-Wodzicki-Chern-Simons class is

$$\mathsf{CS}^W_{2i-1}(\mathsf{LM}) = [\mathsf{Tch}^W_i(
abla^{s=0},
abla^{s=1})] \in \mathsf{H}^{2i-1}(\mathsf{LM},\mathbb{C}).$$

 Tch_i^W involves res^W , so it is locally computable.

LM is infinite dimensional, but the local nature of res^{*W*} implies $ch_i^W(\Omega^s) \equiv 0$ as a form if dim M = 2i - 1.

Definition:

Let dim M = 2i - 1. The (2i-1)-Wodzicki-Chern-Simons class is

$$CS^{W}_{2i-1}(LM) = [Tch^{W}_{i}(\nabla^{s=0}, \nabla^{s=1})] \in H^{2i-1}(LM, \mathbb{C}).$$

 Tch_i^W involves res^W , so it is locally computable.

Proposition

At a loop $\gamma \in LM$,

$$CS_{2i-1}^{W}(X_{1},...,X_{2i-1})(\gamma) = \frac{i}{2^{i-2}} \sum_{\sigma} \operatorname{sgn}(\sigma) \int_{\gamma} \operatorname{tr}[(R(X_{\sigma(1)},\cdot)\dot{\gamma})(\Omega^{M})^{i-1}(X_{\sigma(2)},...,X_{\sigma(2i-1)})].$$

Given (M^{2i-1}, g) , we get locally computable classes

$$CS^W_{2i-1}(g) \in H^{2i-1}(LM,\mathbb{C})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

associated to the 2*i*-component of the Chern character.

Given (M^{2i-1}, g) , we get locally computable classes

$$CS^W_{2i-1}(g) \in H^{2i-1}(LM,\mathbb{C})$$

associated to the 2*i*-component of the Chern character.

Remarks:

We can repeat this construction for any characteristic class of degree 2i, e.g. some product of Chern classes.

By curvature tensor symmetries, $CS_{4i-1}^{W}(g) = 0$, so from now on, dim M = 4i + 1.

If we use ∇^0 , ∇^s instead of ∇^0 , ∇^1 in the definition of the WCS form, we just change CS^W to $s \cdot CS^W$.

We have a family of Sasakian manifold \overline{M}_k associated to an integral Kähler manifold M^{4i} . \overline{M}_k comes with a natural circle action $a: S^1 \times \overline{M}_k \to \overline{M}_k$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We have a family of Sasakian manifold \overline{M}_k associated to an integral Kähler manifold M^{4i} . \overline{M}_k comes with a natural circle action $a: S^1 \times \overline{M}_k \to \overline{M}_k$. Since

$$\begin{split} \operatorname{Maps}(S^1 \times \overline{M}_k, \overline{M}_k) &= \operatorname{Maps}(S^1, \operatorname{Maps}(\overline{M}_k, \overline{M}_k)) \\ &= \operatorname{Maps}(\overline{M}_k, \operatorname{Maps}(S^1, \overline{M}_k)). \end{split}$$

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 国 ■ ● ● ●

We have a family of Sasakian manifold \overline{M}_k associated to an integral Kähler manifold M^{4i} . \overline{M}_k comes with a natural circle action $a: S^1 \times \overline{M}_k \to \overline{M}_k$. Since

$$\begin{split} \operatorname{Maps}(S^1 \times \overline{M}_k, \overline{M}_k) &= \operatorname{Maps}(S^1, \operatorname{Maps}(\overline{M}_k, \overline{M}_k)) \\ &= \operatorname{Maps}(\overline{M}_k, \operatorname{Maps}(S^1, \overline{M}_k)), \end{split}$$

we get $a^D: S^1 \to \operatorname{Diff}(\overline{M}_k)$ and a class

 $[a^D] \in \pi_1(\operatorname{Diff}(\overline{M}_k)).$

We have a family of Sasakian manifold M_k associated to an integral Kähler manifold M^{4i} . \overline{M}_k comes with a natural circle action $a: S^1 \times \overline{M}_k \to \overline{M}_k$. Since

$$\begin{split} \operatorname{Maps}(S^1 \times \overline{M}_k, \overline{M}_k) &= \operatorname{Maps}(S^1, \operatorname{Maps}(\overline{M}_k, \overline{M}_k)) \\ &= \operatorname{Maps}(\overline{M}_k, \operatorname{Maps}(S^1, \overline{M}_k)), \end{split}$$

we get $a^D: S^1 \to \operatorname{Diff}(\overline{M}_k)$ and a class

 $[a^D] \in \pi_1(\operatorname{Diff}(\overline{M}_k)).$

We also get $a^L : \overline{M}_k \to \operatorname{Maps}(S^1, \overline{M}_k) = L\overline{M}_k$ and a class

 $[a^{L}] = a^{L}_{*}[\overline{M}_{k}] \in H_{4i+1}(L\overline{M}_{k},\mathbb{C}).$

We have a family of Sasakian manifold M_k associated to an integral Kähler manifold M^{4i} . \overline{M}_k comes with a natural circle action $a: S^1 \times \overline{M}_k \to \overline{M}_k$. Since

$$\begin{split} \operatorname{Maps}(S^1 \times \overline{M}_k, \overline{M}_k) &= \operatorname{Maps}(S^1, \operatorname{Maps}(\overline{M}_k, \overline{M}_k)) \\ &= \operatorname{Maps}(\overline{M}_k, \operatorname{Maps}(S^1, \overline{M}_k)), \end{split}$$

we get $a^D: S^1 \to \operatorname{Diff}(\overline{M}_k)$ and a class

 $[a^D] \in \pi_1(\operatorname{Diff}(\overline{M}_k)).$

We also get $a^L : \overline{M}_k \to \operatorname{Maps}(S^1, \overline{M}_k) = L\overline{M}_k$ and a class

 $[a^{L}] = a^{L}_{*}[\overline{M}_{k}] \in H_{4i+1}(L\overline{M}_{k},\mathbb{C}).$

Fact:

$$[a^L] \neq 0 \Rightarrow [a^D] \neq 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We have $[a^D] \in \pi_1(\text{Diff}(\overline{M}_k)), [a^L] \in H_{4i+1}(L\overline{M}_k, \mathbb{C})$ with $[a^L] \neq 0 \Rightarrow [a^D] \neq 0.$

So:

We have
$$[a^D] \in \pi_1(\text{Diff}(\overline{M}_k)), [a^L] \in H_{4i+1}(L\overline{M}_k, \mathbb{C})$$
 with
 $[a^L] \neq 0 \Rightarrow [a^D] \neq 0.$

So:

۲

 $\int_{[a^L]} CS^W_{4k+1} \neq 0 \Rightarrow [a^D] \text{ has infinite order.}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We have
$$[a^D] \in \pi_1(\text{Diff}(\overline{M}_k)), [a^L] \in H_{4i+1}(L\overline{M}_k, \mathbb{C})$$
 with
 $[a^L] \neq 0 \Rightarrow [a^D] \neq 0.$

So:

۲

۲

$$\begin{split} &\int_{[a^L]} CS^W_{4k+1} \neq 0 \Rightarrow [a^D] \text{ has infinite order.} \\ &\int_{[a^L]} CS^W_{4k+1} = \int_{a^L_*[\overline{M}_k]} CS^W_{4k+1} = \int_{\overline{M}_k} a^{L,*} CS^W_{4k+1} \end{split}$$

is locally computable.

Lemma

Let M be a Kähler surface with local o.n. frame $\{e_2, Je_2, e_3, Je_3\}$ and let $\overline{\xi}$ be the unit vector along the circle fiber of \overline{M}_k . Then

$$\begin{split} & = \frac{3k^2}{5} \left\{ 32\pi^2 p_1(\Omega)(e_2, Je_2, e_3, Je_3) \right. \\ & = \frac{3k^2}{5} \left\{ 32\pi^2 p_1(\Omega)(e_2, Je_2, e_3, Je_3) + 32k^2 [3R(e_2, Je_2, e_3, Je_3) \right. \\ & -R(e_2, e_3, e_2, e_3) - R(e_2, Je_3, e_2, Je_3) \\ & +R(e_2, Je_2, e_2, Je_2) + R(e_3, Je_3, e_3, Je_3)] \\ & + 192k^4 \right\}, \end{split}$$

where $p_1(\Omega)$ is the first Pontrjagin form of M.

Clearly

$$\int_{\overline{M}_k} a^{L,*} CS_5^W \neq 0 \text{ for } k \gg 0.$$

Theorem

Let (M, ω) be a compact Kähler surface. Then the circle action is an element of infinite order in $\pi_1(\text{Diff}(\overline{M}_k))$ and in $\pi_1(\text{Isom}(\overline{M}_k))$ for $k \gg 0$.

Theorem

Let (M, ω) be a compact Kähler surface. Then the circle action is an element of infinite order in $\pi_1(\text{Diff}(\overline{M}_k))$ and in $\pi_1(\text{Isom}(\overline{M}_k))$ for $k \gg 0$.

We can do more careful calculations for specific Kähler surfaces.

Theorem

Let (M, ω) be a compact Kähler surface. Then the circle action is an element of infinite order in $\pi_1(\text{Diff}(\overline{M}_k))$ and in $\pi_1(\text{Isom}(\overline{M}_k))$ for $k \gg 0$.

We can do more careful calculations for specific Kähler surfaces.

Proposition

(i) $\pi_1(\text{Diff}(\overline{\mathbb{CP}}_k^2)$ is infinite for $k \neq \pm 1$. (ii) Let M be a compact projective K3 surface. Then $\pi_1(\text{Diff}(\overline{M}_k))$ is infinite for all k.

Example: There is a family of Sasaki-Einstein metrics $g_a, a \in (0, 1)$, on B^5 which match up nicely on ∂B^5 to give metrics on $S^2 \times S^3$. We get

$$\int_{[a^{L}]} CS_{5}^{W}(g_{a}) = -\frac{1849\pi^{4}}{37750}(-1+a^{2}),$$

so $\pi_1(\text{Diff}(S^2 \times S^3))$ is infinite.

Example: There is a family of Sasaki-Einstein metrics $g_a, a \in (0, 1)$, on B^5 which match up nicely on ∂B^5 to give metrics on $S^2 \times S^3$. We get

$$\int_{[a^{L}]} CS_{5}^{W}(g_{a}) = -\frac{1849\pi^{4}}{37750}(-1+a^{2})$$

so $\pi_1(\text{Diff}(S^2 \times S^3))$ is infinite.

At a = 1, the metric glues up to the standard metric on S^5 . But now we conclude nothing about $\pi_1(\text{Diff}(S^5))$.
For any r, on \overline{M}_k

$$a^* CS^W_{4r+1}(\gamma) = \sum_{i=1}^{2r} \alpha_i k^{2i} = \alpha_1 k^2 + \sum_{i=2}^{2r} \alpha_i k^{2i}$$

with $\alpha_i \in \Lambda^{4r+1}(\overline{M}_k)$.

For any r, on \overline{M}_k

$$a^* CS^W_{4r+1}(\gamma) = \sum_{i=1}^{2r} \alpha_i k^{2i} = \alpha_1 k^2 + \sum_{i=2}^{2r} \alpha_i k^{2i}$$

with $\alpha_i \in \Lambda^{4r+1}(\overline{M}_k)$.

For any r, on \overline{M}_k

$$a^*CS^W_{4r+1}(\gamma) = \sum_{i=1}^{2r} \alpha_i k^{2i} = \alpha_1 k^2 + \sum_{i=2}^{2r} \alpha_i k^{2i}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

with $\alpha_i \in \Lambda^{4r+1}(\overline{M}_k)$.

Lemma

 $\alpha_1(\bar{\xi}, \cdot)$ is a multiple of $ch_{2r}(\Omega^M)$.

For any r, on \overline{M}_k

$$a^*CS^W_{4r+1}(\gamma) = \sum_{i=1}^{2r} \alpha_i k^{2i} = \alpha_1 k^2 + \sum_{i=2}^{2r} \alpha_i k^{2i}$$

with $\alpha_i \in \Lambda^{4r+1}(\overline{M}_k)$.

Lemma

 $\alpha_1(\bar{\xi}, \cdot)$ is a multiple of $ch_{2r}(\Omega^M)$.

As before, if $[ch_{2r}] \neq 0 \in H^{2r}(M)$, then for some cycle $[\sigma] \in H_{2r}(M)$,

$$\int_{\sigma} a^* CS^{W}_{4r+1}(\gamma) = \sum \left(\int_{\sigma} \alpha_i \right) k^{2i} = \left(\int_{\sigma} \alpha_1 \right) k^2 + h.o. \neq 0$$

for $k \gg 0$. As before, this implies $\pi_1(\text{Diff}(\overline{M}_k))$ is infinite.

・ロト・日本・モート モー うへの

Theorem

(i) $\pi_1(\text{Diff}(\overline{\mathbb{CP}}_k^{2i}))$ is infinite for $k \gg 0$. (ii) Let M have real dimension 4i. If $\sigma(M) \neq 0$, then $\pi_1(\text{Diff}(\overline{M}_k))$ is infinite for $k \gg 0$.

Proof: If $\sigma(M) \neq 0$, then some Pontrjagin number is nonzero, which implies that some Chern character component ch_{2r} is nonzero.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Every symplectic manifold is "Kähler except for integrability." Do these results carry over for line bundles over integral symplectic manifolds?
- Find a nonstandard metric on S^5 such that $\int_{[a^L]} CS_5^{\mathcal{W}}(g) \neq 0$, or prove that no such metric exists.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Y. Maeda, S. Rosenberg, F. Torres-Ardila, "The geometry of loop spaces I: H^s Riemannian metrics," *Int. J. Math.* **26** (2015), arXiv:1405.2491

Y. Maeda, S. Rosenberg, F. Torres-Ardila, "The geometry of loop spaces II: Characteristic classes," to appear in *Adv. in Math.*, arXiv:1405.3571

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで